• Kiểu ảnh
– Các hàm sử dụng tuyến tính yêu cầu một tham số chỉ ra phương pháp nội suy. Với hầu hết các hàm, phương pháp mặc định được sử dụng là nearest-neighbor interpolation. Phương pháp này tạo ra một kết quả có thể chấp nhận được cho hầu hết các ảnh và là phương pháp duy nhất thích hợp với ảnh chỉ số. Với ảnh cường độ hay RGB, tuy nhiên ta thường chỉ ra kiểu song tuyến tính hoặc song khối bởi vì những phương pháp này cho kết quả tốt hơn
Với ảnh RGB, nội suy thường được thực hiện trên mặt phẳng R,B,G một cách riêng biệt
Với ảnh nhị phân, nội suy gây ra những ảnh hưởng mà ta có thể nhận thấy được. Nếu sử dụng nội suy song tuyến tính hoặc song khối, giá trị tính toán được cho pixel trong ảnh ra sẽ không hoàn toàn là 0 hoặc 1. Ảnh hưởng trên ảnh kết quả phụ thuộc vào lớp của ảnh vào:

+ Nếu lớp ảnh vào là double, ảnh ra là một ảnh đen trắng thuộc lớp double. Ảnh ra không là ảnh nhị phân bởi vì nó bao gồm các giá trị khác 0 và 1.

+ Nếu ảnh vào là uint8, ảnh ra là một ảnh nhị phân thuộc lớp uint8. Giá trị của các pixel được nội suy được làm tròn thành 0 hoặc 1. Vì vậy , ảnh ra thuộc lớp uint8.

Nếu sử dụng phương pháp nearest-neighbor interpolation, ảnh ra luôn là ảnh nhị phân bởi vì những giá trị của pixel được nội suy được lấy trực tiếp từ ảnh vào.

  • Thay đổi kích thước ảnh
– Để thay đổi kích thước của một ảnh, sử dụng hàm imresize. Sử dụng hàm này ta có thể:
+ Chỉ ra kích thước của ảnh kết quả.
+ Chỉ ra phương pháp nội suy được sử dụng.
+ Chỉ ra bộ lọc được sử dụng để ngăn ngừa hiện tượng răng cưa.
Chỉ ra kích thước cho ảnh kết quả

– Sử dụng hàm imresize, ta chó thể chỉ ra kích thước của ảnh kết quả theo hai cách:
+ Bằng cách chỉ ra hệ số phóng đại được sử dụng trên ảnh.
+ Bằng cách chỉ ra chiều của ảnh kết quả.
Sử dụng hệ số phóng đại ảnh

– Để mở rộng một ảnh, chỉ ra hệ số phóng đại lớn hơn 1. Để thu nhỏ một ảnh, chỉ ra hệ số phóng đại nằm giữa 0 và 1. Chẳng hạn, lệnh sau tăng kích thước của ảnh I lên 1.25 lần:



Hình 1. Ảnh trước và sau khi resize
I = imread('circuit.tif'); 
J = imresize(I,1.25); 
imshow(I) 
figure, imshow(J)
  • Chỉ định kích thước của ảnh ra
– Ta có thể chỉ ra kích thước của ảnh ra bằng cách truyền một véc tơ chứa số lượng hàng và cột của ảnh sau cùng. Những lệnh sau đây tạo một ảnh ra Y với 100 hàng và 150 cột.
Y = imresize(X,[100 150])
  • Chú ý: Nếu kích thước được chỉ ra không có cùng tỉ lệ với ảnh vào, ảnh ra sẽ bị biến dạng
  • Chỉ định phương pháp nội suy được sử dụng.
– Theo mặc định, hàm imresize sử dụng phương pháp nội suy các pixel gần nhất (nearest – neighbor interpolation) để tính giá trị các pixel của ảnh ra. Tuy nhiên, ta có thể chỉ định các phương pháp nội suy khác. Bảng sau đây liệt kê các phương pháp nội suy được trợ giúp theo thứ tự của độ phức tạp.

Giá trị tham sốPhương pháp nội suy
‘nearest’Nội suy các phixel gần nhất ( mặc định )
‘bilinear’Nội suy song tuyến tính
‘biculic’Nội suy song khối

Trong ví dụ sau, hàm imresize sử dụng phương pháp nội suy song tuyến tính:
Y=imresize(X, [100 150],’bilinear’);
  • Sử dụng bộ lọc để ngăn chặn hiện tượng răng cưa

– Việc giảm kích thước (hình học) của một ảnh có thể gây ra những ảnh hưởng nhất định lên ảnh chẳng hạn như hiện tượng xuất hiện răng cưa tại biên của ảnh . Điều này là do thông tin luôn bị mất khi ta giảm kích thước một ảnh. Răng cưa xuất hiện như những gợn sóng trong ảnh sau cùng.
– Khi giảm kích thước của ảnh sử dụng nội suy song tuyến tính hoặc song khối, hàm imresize tự động áp đặt một bộ lọc thông thấp lên ảnh trước khi nội suy. Điều này để giảm ảnh hưởng của răng cưa trong ảnh ra. Ta có thể chỉ ra kích thước của bộ lọc này hoặc chỉ ra một bộ lọc khác thay thế.
Chú ý: Thậm chí đã sử dụng một bộ lọc thông thấp, chất lượng của ảnh vẫn bị ảnh hưởng do thông tin luôn bị mất trong quá trình nội suy
– Hàm imresize không áp đặt một bộ lọc thông thấp lên ảnh nếu phương pháp nội suy các pixel gần nhất được sử dụng. Phương pháp nội suy này ban đầu được sử dụng với các ảnh chỉ số và bộ lọc thông thấp không thích hợp cho kiểu ảnh này.
– Ta cũng có thể chỉ ra một bộ lọc tự tạo thay cho các bộ lọc có sẵn.
Hàm imresize
Cú pháp của hàm này như sau:
B = imresize(A,m) 
B = imresize(A,m,method) 
B = imresize(A,[mrows ncols],method) 
B = imresize(...,method,n)  
B = imresize(...,method,h)
Diễn giải

+ B=imresize(A,m): Trả lại một ảnh B lớn gấp m lần ảnh A (kích thước hình học) sử dụng phương pháp nội suy mặc định (nearest – neighbor interpolcation). A có thể là một ảnh chỉ số, ảnh đen trắng, RGB hoặc ảnh nhị phân. Nếu m nằm giữa 0 và 1, B sẽ nhỏ hơn A. Nếu m lớn hơn 1, B sẽ lớn hơn A.
+ B=imresize(A,m,method): Trả lại một ảnh lớn gấp m lần ảnh A sử dụng phương pháp nội suy method. method là một chuỗi chỉ ra phương pháp nội suy nào được sử dụng chẳng hạn: ‘nearest’,’bilinear’,’bicubic’.
+ B=imresize(A, [mrows ncols],method): Trả lại một ảnh với kích thước được chỉ ra bởi vector [mrows ncols]. Nếu kích thước được chỉ ra không cùng tỉ lệ với ảnh vào, ảnh sẽ bị biến dạng . Khi kích thước của ảnh ra nhỏ hơn kích thước của ảnh vào và phương pháp nội suy được sử dụng là ‘bilinear’ hoặc ‘bicubic’, hàm imresize áp đặt một bộ lọc thông thấp trước khi tuyến tính hoá để giảm hiện tượng răng cưa. Kích thước mặc định là 11×11. Ta có thể chỉ ra một thứ tự khác cho bộ lọc mặc định sử dụng cấu trúc:
+ B=imresize(…,method,n): n là một số nguyên chỉ ra kích thước của bộ lọc – nxn. Nếu n=0, hàm imresize bỏ qua bước lọc. Ta cũng có thể chỉ ra bộ lọc riêng sử dụng cú pháp:
+ B=imresize(…,method,h): Trong đó h là một bộ lọc FIR hai chiều ( có thể được trả về bởi các hàm ftrans2, fwind1, fwind2 hoặc fsamp2 ).

  • Quay ảnh
– Để quay một ảnh, sử dụng hàm imrotate. Hàm này chấp nhận hai tham số chính:
+ Ảnh cần quay
+ Góc quay
– Góc quay tính theo độ. Nếu ta chỉ ra một giá trị dương, hàm imrotate quay ảnh theo chiều ngược chiều kim đồng hồ. Nếu chỉ ra giá trị âm, hàm quay ảnh theo chiều kim đồng hồ. Ví dụ sau quay một ảnh 35 độ theo chiều ngược chiều kim đồng hồ:
J=imrotate(I,35 ) ;
– Một số tham số tuỳ chọn ta có thể truyền vào cho hàm bao gồm:
+ Phương pháp nội suy được sử dụng
+ Kích thước của ảnh ra
  • Chỉ định phương pháp nội suy được sử dụng
– Theo mặc định, hàm imrotate sử dụng phương pháp nội suy thứ nhất (nearest-neighbor interpolation) để tính giá trị các pixel trong ảnh ra. Tuy nhiên, ta có thể chỉ ra các phương pháp nội suy khác như: ‘bilinear ‘,’bicubic’
Ví dụ sau quay một ảnh 35 độ ngược chiều kim đồng hồ sử dụng nội suy song tuyến tính:
I = imread('circuit.tif');  
J = imrotate(I,35,'bilinear');  
imshow(I)  
figure, imshow(J)


Hình 2. Ảnh trước và sau khi imrotate
  • Chỉ định kích thước của ảnh ra
Theo mặc định, hàm imrotate tạo một ảnh ra đủ lớn để có thể bao gồm toàn bộ các pixel của ảnh gốc. Các pixel nằm ngoài biên của ảnh gốc được gán giá trị 0 như thể nền màu đen trong ảnh ra. Nếu ta chỉ ra chuỗi ‘crop’ như một tham số, hàm imrotate sẽ xén ảnh ra tới kích thước như ảnh vào.
  • Hàm imrotate

Cú pháp của nó như sau:
B = imrotate(A,angle)  
B = imrotate(A,angle,method) 
B = imrotate(A,angle,method,bbox)

Diễn giải

+ B=imrotate(A,angle): Quay ảnh A một góc angle độ theo chiều ngược chiều kim đồng hồ, sử dụng phương pháp nội suy các pixel gần nhất. Để quay theo chiều kim đồng hồ hãy truyền giá trị âm cho tham số angle
+ B=imrotate(A,angle,method): Quay ảnh A một góc angle độ theo chiều kim đồng hồ sử dụng phương pháp nội suy được chỉ ra trong method.
+ B=imrotate(A,angle,method,bbox): Quay ảnh A một góc angle độ. Tham số bbox chỉ ra hộp biên của ảnh trả về. bbox là một chuỗi có thể nhận các giá trị sau:
‘crop’: Ảnh ra B chỉ bao gồm phần trung tâm của ảnh được quay và có cùng kích thước với ảnh A
‘loose’: ( Mặc định ): Ảnh ra B bao gồm toàn bộ ảnh được quay và lớn hơn ảnh A. Hàm imrotate thiết lập giá trị 0 cho các pixel ngoài biên của ảnh gốc.
Ví dụ :
– Ví dụ này đọc một ảnh quang phổ ánh sáng mặt trời được lưu trong định dạng FITS và quay nó và căn nó theo chiều ngang.
I = fitsread('solarspectra.fts');  
I = mat2gray(I); 
J = imrotate(I,-1,'bilinear','crop'); 
imshow(I)  
figure, imshow(J)

Hình 3. Ảnh được quay theo chiều ngang

e) Xén ảnh (image cropping)

– Để trích một vùng chữ nhật của một ảnh, sử dụng hàm imcrop. Hàm imcrop chấp nhận hai tham số chính:
+ Ảnh cần xén
+ Các góc của hình chữ nhật xác định vùng xén
– Nếu ta gọi hàm imcrop mà không chỉ ra hình chữ nhật, ta có thể xén ảnh theo các tương tác. Trong trường hợp này, ta sử dụng trỏ chuột để chọn vùng chữ nhật cần xén bằng cách nhấn và giữ phím chuột trái và di chuyển để chọn vùng xén. Khi chọn xong thì nhả chuột. Trong ví dụ sau, ta hiển thị một ảnh và gọi hàm imcrop. Hàm imcrop hiển thị ảnh trong một hình và đợi ta vẽ vùng chữ nhật cần xén trên ảnh.
imshow('circuit.tif')
I=imcrop; 
Imshow(I);

Hàm imcrop

– Cú pháp của nó như sau:
I2 = imcrop(I)  
X2 = imcrop(X,map)  
RGB2 = imcrop(RGB) 
I2 = imcrop(I,rect)  
X2 = imcrop(X,map,rect)  
RGB2 = imcrop(RGB,rect)  
[...] = imcrop(x,y,...)  
[A,rect] = imcrop(...)  
[x,y,A,rect] = imcrop(...)
Diễn giải

– Hàm imcrop xén một ảnh theo một hình chữ nhật được chỉ định.
I2=imcrop(I) ;  
X2=imcrop(X,map); 
RGB2=imcrop(RGB);
Hàm imcrop sẽ hiển thị ảnh I và đợi ta chỉ ra hình chữ nhật cần xén bằng chuột
– Nếu ta bỏ qua các tham số, hàm imcrop thao tác trên ảnh của trục hiện tại.
– Để chỉ định một hình chữ nhật ta dùng trỏ chuột như đã nói ở trên
– Ta cũng có thể chỉ ra kích thước của hình chữ nhật mà không thao tác trực tiếp như các cú pháp sau:
I2 = imcrop(I,rect)  
X2 = imcrop(X,map,rect)  
RGB2 = imcrop(RGB,rect)

Trong đó: rect là một vector bốn phần tử dạng [xmin ymin width height], những giá trị này được chỉ ra trong toạ độ không gian. Để chỉ định các toạ độ không theo toạ độ không gian cho ảnh vào, đặt trước các tham số khác với 2 vector hai phần tử chỉ ra Xdata và Ydata. Chẳng hạn:
[…]=imcrop(x,y,…)
– Nếu ta cung cấp các tham số ra phụ, hàm imcrop sẽ trả lại thông tin về vùng chữ nhật được chọn và hệ toạ độ của ảnh vào. Chẳng hạn:
[A,rect] = imcrop(...)  
[x,y,A,rect] = imcrop(...)
A là ảnh ra, x và y là Xdata và Ydata của ảnh vào

  • Chú ý:
– Do rect là một tập hợp các toạ độ không gian, các phần tử width và height trong rect không luôn luôn tương ứng chính xác với kích thước của ảnh ra. Chẳng hạn, giả sử rect là [20 20 40 30], sử dụng hệ toạ độ không gian theo mặc định. Góc trên trái của vùng chữ nhật được chọn là tâm của pixel (20,20) và góc dưới phải của vùng chữ nhật là tâm của pixel (50,60). Ảnh ra là một ảnh có kích thước 31×41 chứ không phải 30×40. Điều này là do ảnh ra bao gồm tất cả các pixel trong ảnh vào hoàn toàn hoặc một phần được bao bọc bởi vùng chữ nhật trên. Ví dụ
I = imread('circuit.tif'); 
I2 = imcrop(I,[75 68 130 112]); 
imview(I), imview(I2)


Hình 4. Ảnh trước và sau khi imcrop theo 1 tọa độ cho trước

f) Các biến đổi ảnh thông dụng

– Để thực hiện các biến đổi không gian ảnh 2 chiều, sử dụng hàm imtransform. Hàm này chấp nhận hai tham số chính:

  • Ảnh cần biến đổi
  • Một cấu trúc biến đổi được gọi là TFORM chỉ ra kiểu biến đổi ta muốn thực hiện
Chỉ ra kiểu biến đổi

– Ta chỉ ra kiểu biến đổi trong cấu trúc TFORM. Có hai cách để tạo một cấu trúc TFORM:

Sử dụng hàm maketform
Sử dụng hàm cp2tform
Sử dụng hàm maketform

– Khi sử dụng hàm này, ta chỉ ra kiểu biến đổi ta muốn thực hiện. Các kiểu biến đổi mà maketform trợ giúp bao gồm:
+ ’ affine’: Biến đổi có thể bao gồm: translation ( dịch ), rotation ( quay ), scaling, stretching và shearing. Các đường thẳng vẫn là đường thẳng, đường song song vẫn song song nhưng hình chữ nhật có thể bị biến đổi
+ ’box’: Một trường hợp đặc biệt của affine khi mỗi chiều được dời và định tỉ lệ độc lập
+ ‘composite ‘: Bao gồm tổ hợp của hai hay nhiều phép biến đổi
+ ‘custom ‘: Biến đổi do người dùng tự định nghĩa, nó cung cấp các hàm thuận hoặc nghịch được gọi bởi hàm imtransform
+ ‘projective ‘: Biến đổi trong đó các đường thẳng vẫn giữ nguyên nhưng các đường song song đồng quy lại thành một điểm.


  • Sử dụng cp2tform
– Ta sử dụng hàm này để tạo ra cấu trúc TFORM khi ta muốn thi hành một biến đổi cần khít với các điểm dữ liệu như một biến đổi đa thức.

  • Chú ý: Khi sử dụng với hàm imtransform, cấu trúc TFORM phải định nghĩa một biến đổi 2 chiều. Nếu một ảnh chứa nhiều hơn một chiều chẳng hạn như ảnh RGB, cùng một biến đổi 2 chiều sẽ được áp đặt tới tất cả các mặt phẳng 2 chiều theo chiều cao hơn. Để định nghĩa một biến đổi n chiều sử dụng hàm imformarrray
  • Thực hiện biến đổi

– Khi ta đã định nghĩa một cấu trúc TFORM, ta có thể thi hành một sự biến đổi bằng cách gọi hàm imtransform. Chẳng hạn, đoạn mã sau sử dụng hàm này để thi hành một biến đổi projective cho một ảnh bàn cờ:
I = checkerboard(20,1,1);  
figure; imshow(I)  
T = maketform('projective',[1 1; 41 1; 41 41;   1 41],...  
 [5 5; 40 5; 35 30; -10 30]); 
R = makeresampler('cubic','circular');  
K = imtransform(I,T,R,'Size',[100 100],'XYScale',1);  
figure, imshow(K)


Hình 5. Ảnh trước và sau khi imtransforms

– Các tuỳ chọn của hàm imtransform cho phép ta điều khiển nhiều khía cạnh của việc biến đổi. Chẳng hạn, chú ý rằng ảnh bị biến đổi xuất hiện nhiều bản copy của ảnh gốc. Điều này nhận được bởi tuỳ chon ‘size’.Xem thêm Help Online
Hàm imtransform

– Áp đặt một biến đổi không gian 2 chiều lên một ảnh
Cú pháp
B = imtransform(A,TFORM) 
B = imtransform(A,TFORM,INTERP) 
[B,XDATA,YDATA] = imtransform(...) 
[B,XDATA,YDATA] = imtransform(...,param1,val1,param2,val2,...)
Diễn giải

+ B=imtransform(A,TFORM ): biến đổi ảnh A theo cấu trúc được định nghĩa trong TFORM. Cấu trúc này được trả về từ hàm maketform hoặc cp2tform. Nếu ndims(A)>2 như các ảnh RGB thì cùng một biến đổi không gian 2 chiều được áp đặt tới tất cả các mặt phẳng theo chiều cao hơn.
Khi sử dụng cú pháp này, hàm imtransform tự động dịch gốc của ảnh ra để ảnh ra có thể được hiển thị nhiều nhất có thể.
+ B=imtransform(A,TFORM, INTERP): chỉ ra dạng của phép nội suy được sử dụng. INTERP có thể là một trong các giá trị ‘nearest’, ‘bicubic’ hoặc ‘bilinear’.
Tương tự, INTERP có thể là một cấu trúc được trả về từ hàm makeresampler. Tuỳ chọn này cho phép điều khiển nhiều hơn lên việc lấy mẫu lại (resampling).
+ [B,XDATA,YDATA]= imtransform(…): trả về vị trí của ảnh ra B trong không gian X-Y. XDATA và YDATA các vector hai thành phần. Những thành phần của XDATA chỉ ra toạ độ x của cột đầu và cuối của B. Những thành phần của YDATA chỉ ra toạ độ y của cột đầu và cuối của B. Bình thường, hàm imtransform tính toán XDATA và YDATA tự động vì vậy B chứa toàn bộ ảnh đã biến đổi A. Tuy nhiên, ta có thể đè chồng tính toán tự động này xem dưới đây:
+ [B,XDATA,YDATA] = imtransform(…,param1,val1,param2,val2,…): Chỉ ra các tham số điều khiển nhiều khía cạnh khác nhau của biến đổi không gian. Bảng sau liệt kê các tham số mà ta có thể chỉ ra.
Tham sốDiễn giải
‘UData’‘VData’Cả hai tham số này là các vector hai phần tử thực. ‘Udata’ và ‘Vdata’ chỉ ra vị trí không gian của ảnh A trong không gian vào 2 chiều U-V. Hai phần tử của ‘Udata’ cho toạ độ u (hoành độ ) của cột đầu tiên và cuối cùng của A. Hai phần tử của ‘Vdata’ cho toạ độ v ( tung độ ) của hàng đầu tiên và cuối cùng của A.Giá trị mặc định cho ‘Udata’ và ‘Vdata’ tương ứng là [1 size(A,2) ] và [1 size(A,1) ]
‘Xdata’‘Ydata’Cả hai tham số này là các vector hai phần tử thực chỉ ra vị trí không gian của ảnh ra B trong không gian ra 2 chiều X-Y. Hai phần tử của ‘Xdata’ chỉ ra hoành độ x của cột đầu tiên và cuối cùng của B. Hai phần tử của ‘Ydata’ chỉ ra tung độ của hàng đầu tiên và cuối cùng của B.Nếu ‘Xdata’ và ‘Ydata’ không được chỉ ra, hàm imtransform ước lượng giá trị cho chúng để có thể chứa toàn bộ ảnh ra đã bị biến đổi
‘XYScale’Là vector với một hoặc hai phần tử thực. Phần tử đầu tiên của ‘XYScale’ chỉ ra chiều rộng của mỗi pixel vào trong không gian X-Y. Phần tử thứ hai (nếu tồn tại) chỉ ra chiều cao của mỗi pixel ra. Nếu ‘XYScale’ chỉ có một phần tử, giá trị này sẽ được dùng cho cả chiều rộng và chiều cao.Nếu ‘XYScale’ không được chỉ định nhưng Size được chỉ ra thì ‘XYScale’ được tính toán từ ‘Size’,’Xdata’ và ‘Ydata’.
‘Size’Một vector hai phần tử nguyên không âm. ‘Size’ chỉ ra số hàng và cột trong ảnh ra B. Với chiều cao hơn, kích cỡ của B được lấy trực tiếp từ A. Nói cách khác, size(B,k) tương đương với size(A,k) với k>2. Nếu ‘Size’ không được chỉ định, nó sẽ được tính từ ‘Xdata’,’Ydata’ và ‘XYScale’
‘FillValues’Một mảng chứa một hoặc nhiều giá trị tô (fill values). Fill values được sử dụng cho các pixel trên ảnh ra khi vị trí được biến đổi tương ứng trên ảnh vào hoàn toàn là viền ngoài của ảnh ra. nếu A là 2 chiều, ‘Fillvalues’ phải vô hướng. Tuy nhiên, nếu chiều của A lớn hơn 2, ‘FillValues’ có thể là một mảng mà kích thước của nó thoả mãn ràng buộc sau:size(fill_values,k) phải bằng size(A,k+2) hoặc 1.Chẳng hạn, nếu A là một ảnh RGB unit8 có kích thước 200x200x3 thì các khả năng của ‘FillValues’ bao gồm:
  • 0: Tô với màu đen
  • [0;0;0]: Tô với màu đen
  • 255: Tô với màu trắng
  • [255;255;255]: Tô với màu trắng
  • [0;0;255]: Tô với màu xanh
  • [255;255;0]: Tô với màu vàng
Nếu A là 4 chiều 200x200x3x10 thì ‘FillValues’ có thể là 1 vô hướng 1×10,3×1,3×1

Ví dụ 
Áp một phép dịch chuyển ngang tới một ảnh cường độ ;
I = imread('cameraman.tif'); 
tform = maketform('affine',[1 0 0;.5 1 0; 0 0 1]); 
J = imtransform(I,tform); 
imshow(I), figure, imshow(J)


0 nhận xét:

Lập trình C++

Chế tạo robot

Học AutoCAD

Hướng dẫn cài đặt Matlab 2014+15+16

Matlabthayhai. Powered by Blogger.

Video

Khóa học ##Anh văn cho người mất gốc

Lập trình Android toàn tập

Lập trình WinForm với C#: 10 ứng dụng

Lập trình Kotlin toàn tập

Thiết kế Web chuẩn SEO bằng Wordpress cho người mới